US ERA ARCHIVE DOCUMENT

Impact of Emission Reductions on Exposures and Exposure Distributions:

Application of a Geographic Exposure Model

Julian Marshall (Civil Engineering)

G. Ramachandran (Environmental Health)

University of Minnesota

Funding: US EPA

22 January 2008

Issue

- Improving air quality involves prioritizing among sources
- Exposure and health impacts vary among sources
 - > "Intake fraction"
- Exposure disparities (race/income)

Objectives

- Compare emission-reductions among sources:
 - ➤ Impact on average exposure
 - > Impact on exposure distributions
- Policy/management implications

Approach

- Exposure model (25,000 people) for California's South Coast
- Systematically reduce emissions
 - > Impact on average exposures
 - > Impact on exposure distributions

Exposure Model

- 1. Ambient concentrations (CAMx model)
 - 6 air toxics
 - One year
- 2. Time-location-activity survey
 - ~ 29,000 person-days
 - "Geo-coded" locations
- 3. Breathing rates
 - Age, gender, activity level (Layton 1993)
- 4. Microenvironments
 - Indoors, outdoors, in-vehicle
 - Monte Carlo

Hypothetical Results

exposure

Thank you.

Intakes and ethnicity

Median intake, relative to population median

Air-pollution health-effects paradigm

